

OTEC 2004

Dan Carrier Parsons Brinckerhoff

Project Manager
Cooper River Bridge
Charleston, South Carolina

Dan Carrier Background

Hazelet & Erdal 1966 - 1984 (Cincinnati, Ohio Office) Bridge Designer

Parsons Brinckerhoff 1984 - 2004
Project Manager

Dan Carrier PB Project Experience

- Ankara Motorway
 Ankara, Turkey (\$1.5 B)
- Frankford Elevated Reconstr. Project Manager Philadelphia, PA (\$495 M)
- > 895 Bridge Project Manager Richmond, VA (\$170 M)
- Fort Washington Way Project Manager Cincinnati, OH (\$330 M)
- Cooper River Bridge Project Manager Charleston, SC (\$531 M)

DESIGN AND CONSTRUCTION OF THE COOPER RIVER BRIDGE

Charleston, South Carolina

Bird's Eye View Cooper River Bridges Charleston, SC

Cooper River Bridge Charleston, SC

After

Before

Cooper River Bridge Charleston, SC

The new bridge has steel edge girders and floor beams. The total bridge length is 13,200 feet (2.5 miles) end to end.

Design/Construction Team Cooper River Bridge

A Joint Venture of

and

With

Project Challenges Cooper River Bridge

PROJECT CHALLENGES

- Bridge Span Length / Height / Width
- Foundation Conditions
- Ship Collision / Rock Islands
- High Seismic Zone
- Hurricane Wind Area
- Fast Pace

Project Challenges Cooper River Bridge

PROJECT CHALLENGES

Bridge Span Length / Height / Width

Project Statistics Cooper River Bridge

OVERALL STATISTICS

- Total project cost \$531 million
- Total bridge length is over 13,200 feet
- 4 lanes of traffic in each direction with a median barrier
- 12-foot wide sidewalk (south side of the bridge)
- New interchanges at both Charleston and Mt.
 Pleasant

CONSTRUCTION COST

Most expensive construction project in South Carolina history

Project StatisticsCooper River Bridge

MAIN SPAN UNIT

- Main Span length of 1,546 feet is the longest cable- stayed span in North America
- The two Side Spans are 650 feet long each
- The two End Spans are 225 feet long each
- Total length of the Main Span Unit is 3,296 feet
- Maximum width of Bridge Deck is over 140 feet

Project Statistics Cooper River Bridge

MAIN SPAN UNIT

- The two reinforced concrete Main Span Towers are 570 feet tall
- Both Main Span Tower Footings are supported on eleven Drilled Shafts
- Main Span Tower Drilled Shafts are 10-foot diameter and extend 230 feet down
- Both Main Span Towers and Tower Footings are protected from ship impact by Rock Islands

Project Challenges Cooper River Bridge

PROJECT CHALLENGES

- Bridge Span Length / Height / Width
- Foundation Conditions

Project Challenges Cooper River Bridge

PROJECT CHALLENGES

- Bridge Span Length / Height / Width
- Foundation Conditions
- Ship Collision / Rock Islands

Navigation Channels Cooper River Bridge

NAVIGATION CHANNELS

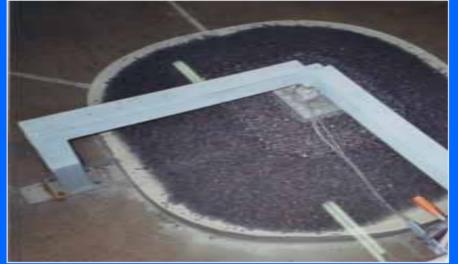
Main Channel over the Cooper River

- Horizontal clearance 1000 feet
- Vertical Clearance 186 feet

Channel over Town Creek

- Horizontal clearance 250 feet
- Vertical clearance 65 feet

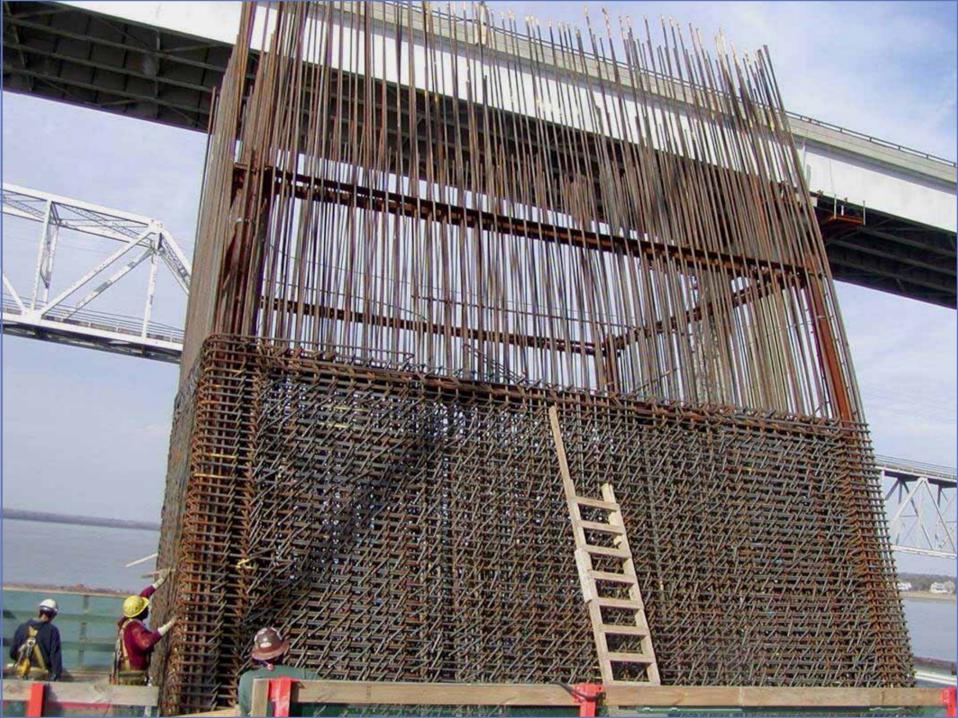
Architectural Rendering – Rock Island Cooper River Bridge


Rock Island Testing Danish Hydraulic Institute Copenhagen, Denmark

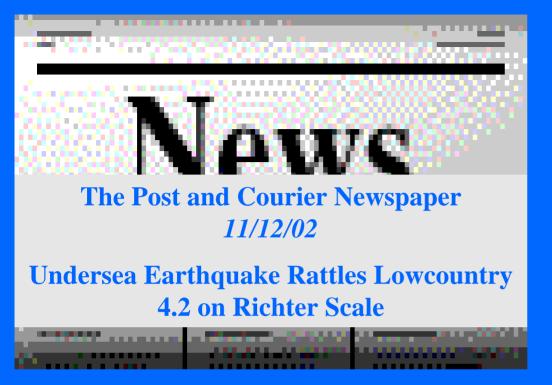
Rock Island Testing Danish Hydraulic Institute Copenhagen, Denmark

Rock Island Construction Cooper River Bridge

- Environmentally friendly bridge protection, safer for ships and bridge
- Built with rock from Newfoundland (21 shiploads)

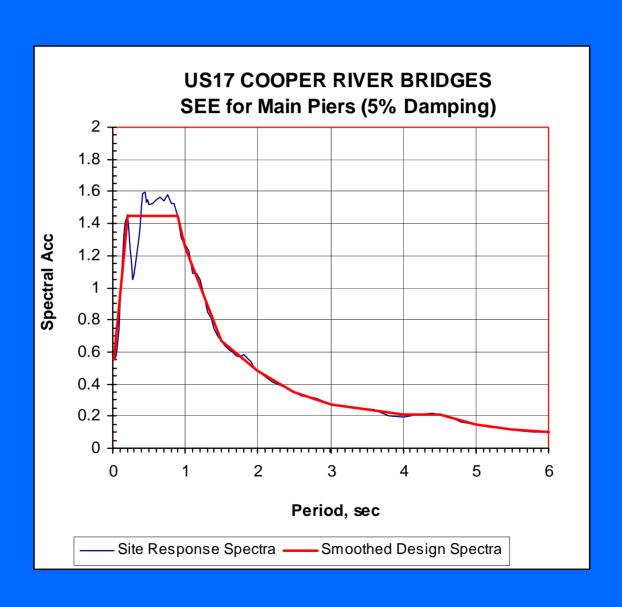


Tower Construction Cooper River Bridge



PROJECT CHALLENGES

- Bridge Span Length / Height / Width
- Foundation Conditions
- Ship Collision / Rock Islands
- High Seismic Zone


Seismic Design Cooper River Bridge Charleston, SC

SEISMIC CRITERIA

- FEE earthquake 6.5 magnitude (Richter Scale), 500 year return period
- SEE earthquake 7.3 magnitude (Richter Scale), 2500 year return period
- Critical Access Path (CAP) structure designated

Seismic Design Cooper River Bridge

Seismic Design Cooper River Bridge

SEISMIC DESIGN STRATEGY

- Tall, slender Main Span Unit / High Level Approaches with few expansion joints, resulting in long period of structure (Over 5 seconds)
- Short, stiff Interchange structures to stabilize bridge
- Overall structure remains elastic under FEE earthquake, and must not collapse under SEE earthquake
- CAP structure must be serviceable immediately following SEE earthquake

High Level Approach Construction Cooper River Bridge

High Level Approach Construction Cooper River Bridge

Interchange Construction Cooper River Bridge

PROJECT CHALLENGES

- Bridge Span Length / Height / Width
- Foundation Conditions
- Ship Collision / Rock Islands
- High Seismic Zone
- Hurricane Wind Area

Wind Design Cooper River Bridge Charleston, SC

HURRICANE CRITERIA

 Bridge designed for wind speeds up to 190 mph

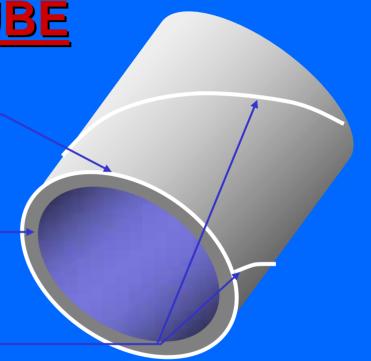
Design Wind Load varies from 50

to 142 psf

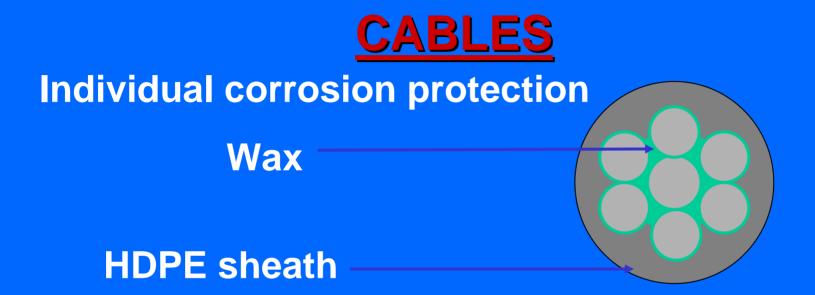
Wind Tunnel Testing Rowan, Williams, Davies, Irwin (RWDI) Guelph, Ontario

RWDI has done wind studies for numerous long span bridges and buildings in North **America** and overseas.

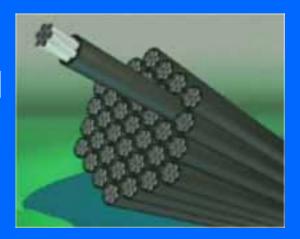
Wind Tunnel Testing Rowan, Williams, Davies, Irwin (RWDI) Guelph, Ontario



Stay Cables Cooper River Bridge


CABLE - STAY TUBE

- External layer
 - Colour and UV protection
- Internal layer
 - Mechanical resistance
- Two helical fillets
 - Reduces rain & wind induced instability



Stay Cables Cooper River Bridge

Designed for strand by strand replacement

Stay Cables Cooper River Bridge

CABLES

- 64 at Each Tower Total 128 cables
- Made up of 7 Wire Strands
- Vary From 31 to 90 Strands / Cable
- Sheathing Diameters Vary 8" to 12"
- Designed and Fabricated by Freyssinet
- Each Can Support Over 500 Tons

PROJECT CHALLENGES

- Bridge Span Length / Height / Width
- Foundation Conditions
- Ship Collision / Rock Islands
- Seismic Design
- Hurricane Wind Area
- Fast Pace

DESIGN BUILD SCHEDULE

PB Signed	Contract	Aug 200 ^o

- Design Aug 2001 Mar 2003
- Construction Services Apr 2002 Mar 2005
- Contract Completion Date Mar 2005

Construction

22	JOTICA	Proceed	

- 1st Drilled Shaft
- Open To Traffic
- PBC Contract Completion Date

July 2001

April 2002

June 2005

July 2006

UNFORESEEN SITE CONDITIONS

