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ABSTRACT

This paper presents a method for modeling and analysis of cable-
stayed bridges under the action of moving vehicles. Accurate and
efficient finite elements are used for modeling the bridge structure.
A beam element is adopted for modeling the girder and the pylons.
Whereas, a two-node catenary cable element derived using exact
analytical expressions for the elastic catenary, is adopted for
modeling the cables. The vehicle model used in this study is a so-
called suspension model that includes both primary and secondary
vehicle suspension systems. Bridge damping, bridge-vehicle
interaction and all sources of geometric nonlinearity are
considered. An iterative scheme is utilized to include the dynamic
interaction between the bridge and the moving vehicles. The
dynamic response is evaluated using the mode superposition
technique and utilizing the deformed dead load tangent stiffness
matrix. To illustrate the efficiency of the solution methodology and
to highlight the dynamic effects, a numerical example of a simple
cable-stayed bridge model is presented.

NOMENCLATURE

uyx  , , LLL projected and unstressed lengths of the cable element

41 ,, uu � horizontal and vertical nodal displacements

41 ,, PP � horizontal and vertical end forces of the cable element

ji TT , tension forces at the two nodes of the cable element

E modulus of elasticity
A cross section area
I moment of inertia
w weight per unit length
m mass
 ρ density

sp cc , damping coefficient of vehicle viscous dampers

sp kk , stiffness of vehicle springs
t time
v vehicle speed

ξ bridge damping ratio
ω circular frequency
µ mass ratio

 p internal force vector
 f external force vector

qqq ���  , ,  nodal displacement, velocity, and acceleration vectors
M mass matrix
C damping matrix
F flexibility matrix
K stiffness matrix

tK tangent stiffness matrix

TMD tuned mass damper

1. INTRODUCTION

Due to their aesthetic appearance, efficient utilization of structural
materials and other notable advantages, cable-stayed bridges have
gained much popularity in recent decades. Bridges of this type are
now entering a new era with main span lengths reaching 1000 m.
This fact is due, on one hand to the relatively small size of the
substructures required and on the other hand to the development of
efficient construction techniques and to the rapid progress in the
analysis and design of this type of bridges.

The recent developments in design technology, material qualities,
and efficient construction techniques in bridge engineering enable
the construction of not only longer but also lighter and more
slender bridges. Thus nowadays, very long span slender cable-
stayed bridges are being built, and the ambition is to further
increase the span length and use shallower and more slender
girders for future bridges. To achieve this, accurate procedures
need to be developed that can lead to a thorough understanding and
a realistic prediction of the structural response due to not only
wind and earthquake loading but also traffic loading. It is well
known that large deflections and vibrations caused by dynamic tire
forces of heavy vehicles can lead to bridge deterioration and



eventually increasing maintenance costs and decreasing service life
of the bridge structure.

Although several long span cable-stayed bridges are being build or
proposed for future bridges, little is known about their dynamic
behavior under the action of moving vehicles. The dynamic
response of bridges subjected to moving vehicles is complicated.
This is because the dynamic effects induced by moving vehicles on
the bridge are greatly influenced by the interaction between the
vehicles and the bridge structure. To consider dynamic effects due
to moving vehicles on bridges, structural engineers worldwide rely
on dynamic amplification factors specified in bridge design codes.
These factors are usually a function of the bridge fundamental
natural frequency or span length and states how many times the
static effects must be magnified in order to cover the additional
dynamic loads. This is the traditional method used today for design
purpose and can yield a conservative and expensive design for
some bridges but might underestimate the dynamic effects for
others. In addition, design codes disagree on how this factor should
be evaluated and today, when comparing different national codes,
a wide range of variation is found for the dynamic amplification
factor. Thus, improved analytical techniques that consider all the
important parameters that influence the dynamic response are
required in order to check the true capacity of existing bridges to
heavier traffic and for proper design of new bridges.

The recent developments in bridge engineering have also affected
damping capacity of bridge structures. Major sources of damping
in conventional bridgework have been largely eliminated in
modern bridge designs reducing the damping to undesirably low
levels. As an example, welded joints are extensively used
nowadays in modern bridge designs. This has greatly reduced the
hysteresis that was provided in riveted or bolted joints in earlier
bridges. For cable supported bridges and in particular long span
cable-stayed bridges, energy dissipation is very low and is often
not enough on its own to suppress vibrations. To increase the
overall damping capacity of the bridge structure, one possible
option is to incorporate external dampers (i.e. discrete damping
devices such as viscous dampers and tuned mass dampers) into the
system. Such devices are frequently used today for cable supported
bridges. However, it is not believed that this is always the most
effective and the most economic solution. Therefore, a great deal
of research is needed to investigate the damping capacity of
modern cable-stayed bridges and to find new alternatives to
increase the overall damping of the bridge structure.

In this paper, the linear dynamic response of a simple two-
dimensional cable-stayed bridge model, subjected to a moving
vehicle, is studied. Bridge damping, exact cable behavior, and
nonlinear geometric effects are considered. This study focuses on
investigating the influence of vehicle speed, bridge damping,
bridge-vehicle interaction, and a tuned mass damper on the bridge
dynamic response.

2. BRIDGE  AND VEHICLE MODELING

2.1 Bridge Structure

Modern cable-stayed bridges exhibit geometrically nonlinear
behavior, they are very flexible and undergo large displacements
before attaining their equilibrium configuration. As an example,
due to this inherently nonlinear behavior, conventional linear dead

load analysis, which assumes small displacements, is often not
applicable [1].

Cable-stayed bridges consist of cables, pylons and girders (bridge
decks) and are usually modeled using beam and bar elements for
the analysis of the global structural response. To consider the
nonlinear behavior of the cables, each cable is usually replaced by
one bar element with equivalent cable stiffness. This approach is
referred to as the equivalent modulus approach and has been used
by several investigators, see e.g. [1, 2, 3]. It has been shown in [4]
that the equivalent modulus approach results in softer cable
response as it accounts for the sag effect but does not account for
the stiffening effect due to large displacements. Still, for some
cases, e.g. for short span cable-stayed bridges, analysis utilizing
the equivalent modulus approach is often sufficient [3], especially
in the feasibility design stage. Whereas, long span cable-stayed
bridges built today or proposed for future bridges are very flexible,
they undergo large displacements, and should therefore be
analyzed taking into account all sources of geometric nonlinearity.
Although several investigators studied the behavior of cable-stayed
bridges, very few tackled the problem of using cable elements for
modeling the cables. See ref. [5, 6] where different cable modeling
techniques are discussed and references to literature dealing with
the analysis and the behavior of cable structures are given.

In this paper, an alternative approach is presented where accurate
and efficient elements are adopted for the modeling. A beam
element, which includes geometrically nonlinear effects and is
derived using a consistent mass formulation, is adopted for
modeling the girder and the pylons. Whereas, a two-node cable
element derived using exact analytical expressions for the elastic
catenary, is adopted for modeling the cables. The nonlinear finite
element method is utilized considering all sources of geometric
nonlinearity, i.e. change of cable geometry under different tension
load levels (cable sag effect), change of the bridge geometry due to
large displacements, and axial force-bending moment interaction in
the bridge deck and pylons (P- δ effect).

The adopted beam element, able to resist bending, shear, and axial
forces, is developed following the total Lagrangian approach and
using a linear interpolation scheme for the displacement
components. This element is chosen because it can handle large
displacements and shear deformations and because it is simple to
formulate the element matrices. This beam element is of minor
interest and, due to space limitation, not discussed here in more
detail. The interested reader is referred to the author’s doctoral
thesis, reference [5], where formulation of this beam element is
presented in detail.

In the following subsection, the cable element matrices will be
given in the element local coordinate system. Using this approach,
each cable may be represented by a single 2-node finite element,
which accurately consider the curved geometry of the cable.
Despite the fact that this cable modeling technique has been
available for many years it has, at least to the author’s knowledge,
very seldom been used for analysis of cables in cable-stayed
bridges.

2.1.1 Cable Element

Consider an elastic cable element, stretched in the vertical plane as
shown in Figure 1, with an unstressed length Lu, modulus of
elasticity E, cross section area A, and weight per unit length w



(uniformly distributed along the unstressed length). For the elastic
catenary, the exact relations between the element projections and
cable force components at the ends of the element are:
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where iT  and jT  are the cable tension forces at the two nodes of
the element. For the above expressions it is assumed that the cable
is perfectly flexible and Hooke’s law is applicable to the cable
material.

FIGURE 1: Catenary cable element

By rewriting the above expressions for xL  and yL  in terms of the
end forces 1P  and 2P  only using the relationships:

2u4  PLwP −= ; 13 PP −= ; 2
2

2
1 PPTi += ; 2

4
2

3 PPTj += (2a-d)

differentiating the new expressions for xL  and yL  and rewriting
the results using matrix notation gives:
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where F is the flexibility matrix. The stiffness matrix is given by
the inverse of F, i.e. 1−= FK . The tangent stiffness matrix tK
and the corresponding internal force vector p for the element can
now be obtained in terms of the four nodal degrees of freedom as:
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The element tangent stiffness matrix Kt relates the incremental
element nodal force vector {∆P1,∆P2,∆P3,∆P4}T to the incremental
nodal displacement vector {∆u1,∆u2,∆u3,∆u4}T. To evaluate the
tangent stiffness matrix Kt, the end forces P1 and P2 must be
determined first. Those forces are adopted as the redundant forces
and are determined, from given positions of cable end nodes, using
an iterative stiffness procedure. This procedure requires starting
values for the redundant forces. Based on the catenary
relationships the following expressions will be used for the starting
values:
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In cases where equation (6c) cannot be used because the unstressed
cable length is less than the chord length, a conservative value of
0.2 for λ  is assumed. Another difficulty arises in equation (6c) for
vertical cables. In that case an arbitrary large value of 106 for λ  is
used. Using equations (2a-d), new cable projections corresponding
to the assumed end forces P1 and P2 are now determined directly
from equations (1a,b) and the misclosure vector {∆Lx , ∆Ly}T is
evaluated as the positions of the end nodes are given. Corrections
to the assumed end forces can now be made using the computed
misclosure vector as:
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where K is the stiffness matrix (the inverse of F in equation (3))
and i is the iteration number. For the present study, this iteration
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process continued until ∆Lx and ∆Ly are less than 10-6. As will be
demonstrated later, this iterative procedure converges very rapidly.

To determine the unstressed cable length, uL , for cases where the
initial cable tension is known instead, a similar iteration procedure
can be adopted. A starting value for the unstressed cable length is
assumed, e.g. equal to the cable chord length, and cable end forces

1P  and 2P  are computed using the iterative procedure described
above. Using equation (2c,d), cable tension can now be computed.
This is then compared with the given initial tension to obtain a
better approximation for uL  for the next iteration step.

For the dynamic analysis, mass discretization is simply done by
static lumping of the element mass at both ends giving the
following lumped mass matrix (ρ is the mass density of the cable):
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1.2 Vehicle Model

The vehicle model used in this study is a so-called suspension
model that includes both primary and secondary vehicle
suspension systems, see Figure 2. This model is sufficient since the
main concern is to investigate the dynamic response of bridges and
not the dynamics of the vehicle itself and since the spans of cable-
stayed bridges are considerably larger than the vehicle axle base. It
is assumed that the vehicle never loses contact with the bridge and
the contact between the bridge and the moving vehicle is assumed
to be a point contact. The equation of motion for the vehicle is
coupled to the bridge equation of motion through the interaction
force existing at the contact point of the two systems. To solve
these two sets of equations, an iterative procedure is adopted, as
the interaction force is dependent on the motion of both the bridge
structure and the vehicle. Vehicle load modeling and the developed
moving load algorithm are described in detail in reference [5]. The

implemented codes fully consider the bridge-vehicle dynamic
interaction and have been verified in [5].

3. ANALYSIS PROCEDURE

The equation of motion for the entire bridge is obtained as:

( )t,,, qqqfqKqCqM t ������ =++ (9)

where qqq ��� ,,  are the bridge node displacement, velocity, and
acceleration vectors, respectively, M the bridge mass matrix, C the
bridge damping matrix, Kt the tangent stiffness matrix, and
f( qqq ��� ,, ,t) the external force vector resulting from the moving
vehicles and the tuned mass dampers. As indicated, the external
force vector is not only time dependent but is also dependent on
the bridge displacements, velocities and accelerations. This vector
contains the interaction forces existing at the contact points
between the vehicles and the bridge and thereby couples the bridge
equation of motion with those of the vehicles.

For this study, the mode superposition technique is adopted
utilizing the deformed dead load tangent stiffness matrix (Kt is
obtained from a nonlinear static dead load analysis). It has been
shown in [5] that linear dynamic traffic load analysis is adequate
for short and medium span cable-stayed bridges as far as traffic
load to dead load ratios are small. Moreover, it is well known that
the mode superposition technique give sufficiently accurate results
with minimum consumption of CPU time, as usually one only need
to consider the first dominant modes of vibration. On the other
hand, this approach requires frequency analysis and eigenmode
extraction to start with, which can be expensive and time
consuming for large systems. For the interested reader, details
concerning the derivation etc. of this linear dynamic procedure as
well as a nonlinear dynamic procedure based on the Newton-
Newmark algorithm can be found in [5].

To evaluate the nonlinear static response, an incremental-iterative
procedure using full Newton-Raphson iterations is adopted. This
procedure is generally expected to give quadratic convergence.
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FIGURE 2: (a) Vehicle model on a bridge element; (b) Typical vehicle modes of vibration

Vehicle data

m1 = 0 kg
m2 = 4840 kg
m3= 39160 kg
cp = 1.76 104 Ns/m
cs = 13.2 104 Ns/m
kp = 15.4 106 N/m
ks = 8.8 106 N/m



FIGURE 3: Geometry of the cable-stayed bridge

Cable no. E (N/m 2) A (m2) Lu (m) w (t/m)

1, 24 2.0 ⋅1011 0.0362 158.13 0.398

2, 11, 14, 23 2.0 ⋅1011 0.0232 134.66 0.255

3,10, 15, 22 2.0 ⋅1011 0.0204 111.64 0.225

4, 9, 16, 21 2.0 ⋅1011 0.0176 89.43 0.194

5, 8, 17, 20 2.0 ⋅1011 0.0139 68.80 0.153

6, 7, 18, 19 2.0 ⋅1011 0.0113 51.69 0.125

12, 13 2.0 ⋅1011 0.0372 158.12 0.409

E (N/m 2) A (m2) I (m4) w (t/m)

Girder 2.0 ⋅1011 0.93 0.26 19.64 †

Girder
central part

2.0 ⋅1011 1.11 1.29 19.64 †

Pylons above
deck level

2.8 ⋅1010 13.01 34.52 30.65

Pylons below
deck level

2.8 ⋅1010 18.58 86.31 43.78

Links deck to
pylons

2.0 ⋅1011 0.56 0.10 4.38

† Including weight of cross beams.

TABLE 1: Parameters for the cable-stayed bridge model defined in Figure 3

4. NUMERICAL EXAMPLE

A 2D model of the cable-stayed bridge described in [1] was
adopted for this investigation. The bridge geometry is shown in
Figure 3 and the properties are given in Table 1.

For the model, it was assumed that the girder was pinned at the
ends, i.e. only rotations were allowed, and elastically connected to
the pylons by vertical links. The pylons were assumed to be rigidly
fixed to the piers, and all cables were assumed fixed to the pylons
and to the girder at their joints of attachment. The model had 119
active degrees of freedom and was composed of 66 elements and
43 nodal points. The CPU time used by the computer (200 MHz
Pentium Pro) to find the tangent stiffness matrix at the dead load
deformed state and solve the system eigenvalue problem
determining all 119 modes of vibration, was about 15 seconds.
This indicates high efficiency of the presented elements. The first
three bending natural frequencies obtained utilizing the dead load
tangent stiffness matrix are: 0.332, 0.436, 0.692 Hz. Bridge
damping ratios were assumed constant for all modes and equal
0.0056.

This bridge model was then subjected to one and to four 44 ton
trucks moving from the left to the right on a smooth road surface at
the constant speed v, see Figure 3. The body-bounce and wheel-
hop frequencies, for the truck model, were chosen as 1.89 and
11.35 Hz. The corresponding mode shapes and vehicle model
properties are shown in Figure 2. To get reasonably converged
reliable solutions, the first 30 bridge modes of vibration were
considered. In the following subsections, the effect of bridge-
vehicle interaction, vehicle speed, bridge damping and a tuned
mass damper on the bridge response is presented.

4.1 Effect of Bridge-Vehicle Interaction

A train of four moving 44 ton trucks, 60 m apart, was adopted to
investigate the effect of bridge-vehicle interaction. The moving
vehicles were modeled either as constant moving forces (i.e.
ignoring interaction) or as sprung masses, as in Figure 2, moving
on a smooth road surface. 1500 increments corresponding to a time
step of 0.021 s were required for this analysis.
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FIGURE 4: Axial force in the shortest cable in side span

Figure 4 above shows the axial force response in the shortest cable
in the first side span. Examining this figure it was found that the
moving force model, which usually gives negligible differences in
results compared to the sprung mass results when the road surface
roughness is ignored, gives for this flexible bridge significant
differences especially for the tension in this shortest cable. It was
also noticed that the dynamic amplification factors (the ratio of the
absolute maximum live load dynamic response to the absolute
maximum live load static response) decreases for the moving force
model except for the tension in this shortest cable where the
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moving force model increases the dynamic amplification factors
tremendously. It is believed that this difference in response occurs
as the result of having the vehicles acting as vibration absorbers
when modeled as sprung mass systems.

Therefore, as a conclusion, the dynamic interaction between the
vehicles and the bridge deck should always be taken into account
even if a road surface with no roughness is assumed.

4.2 Vehicle Speed and Bridge Damping Effect

The vertical displacement of the girder at the center of the bridge,
due to traffic load only (a single 44 ton moving truck), is shown in
Figures 5a and 5b for different speeds and damping ratios. For the
curves in Figure 5b, the vehicle speed was v = 90 km/h. The static
traffic load response is also plotted in this Figure. 1500 increments
were required for the solution of the 50 km/h case, and 1000
increments for the rest.

As expected, damping reduces the bridge response. For ξ = 0.0056
in Figure 5b, the absolute maximum dynamic displacement is
about 20% larger than the static one (dynamic amplification factor
of 1.2). It can be concluded from the results in Figure 5 that the
response increases with the increase in vehicle speed and that
bridge damping has a significant effect upon the response and
should therefore always be considered if accurate representation of
the true dynamic response is required.
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FIGURE 5: Vertical displacement at the center of the bridge
calculated for different vehicle speeds (a) and bridge damping
ratios (b)

4.3 Effect of a Tuned Mass Damper

The effectiveness of a tuned mass damper (TMD) in suppressing
vibrations due to a single 44 ton moving truck is investigated in
this study. The truck was assumed to move on a smooth road
surface at the constant speed of 110 km/h. Reasonably converged
reliable solutions were obtained using 1000 increments

corresponding to a time step of 0.025 s. The TMD was positioned
at the center of the bridge and tuned to the first bending mode of
vibration. The following most often used optimum tuning
parameters, derived in [7] for an undamped structure, are adopted:

µ
ωω
+

=
1

i
tmd (10a)

( )318
3

µ
µξ

+
=tmd (10b)

where ωtmd and ωi are the circular frequencies of the TMD and the
dominant bridge mode to be tuned to, ξtmd the damping ratio of the
TMD, and µ is the mass ratio which relates the TMD mass to the
modal mass of the dominant bridge mode to be tuned to,

itmd mm /=µ . The mass ratio was here set to 0.005 giving a TMD
mass of about 15.6 ton. Some results showing the response due to
traffic loads only are presented in Figures 7 and 8. Figure 6 shows
a cross section of a bridge girder with a tuned mass damper. It was
found from the analysis results that the TMD not always is very
effective in reducing the maximum dynamic response during the
forced vibration period (i.e. when the vehicle is on the bridge). In
fact, due to the interaction between the bridge-vehicle-TMD
systems, the maximum response for certain elements and nodes
can even increase due to the TMD. However, it is evident from
Figures 7 and 8 that the TMD is very effective in reducing the
vibration level in the free vibration period for all elements and
nodes. This is due to the increase of the overall damping of the
bridge by the TMD.

FIGURE 6: Cross section of bridge girder with a TMD
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FIGURE 7: (a) Vertical displacement of the girder at the
center of the bridge; (b) Vertical displacement of the TMD
mass. The dashed vertical line indicate when the truck leaves
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5. CONCLUSIONS

This paper has presented a method for modeling and analysis of
cable-stayed bridges subjected to moving vehicles. Bridge
damping, exact cable behavior, and nonlinear geometric effects
have been considered when analyzing the linear dynamic response.
The study has only focused on investigating the influence of
vehicle speed, bridge damping, bridge-vehicle interaction, and a
tuned mass damper on the bridge dynamic response.

A two-node catenary cable element was adopted for modeling the
cables and it has been found that the main advantages of this cable
element are the simplicity of including the effect of pretension of
the cable and the exact treatment of cable sag and cable weight.
Moreover, the iterative process adopted to find the internal force
vector and tangent stiffness matrix for the cable element is found
to converge very rapidly. According to the author’s opinion,
analysis utilizing the traditional equivalent modulus approach, is
not satisfactory for modern cable-stayed bridges. Modern cable-
stayed bridges built today or proposed for future bridges are, as
they are highly flexible, subjected to large displacements. The
equivalent modulus approach however accounts only for the sag
effect but not for the stiffening effect due to large displacements.

From the study of the traffic load response of cable-stayed bridges
it is concluded that the moving force model (constant force
idealization of the vehicle load) can lead to unnecessary
overestimation of the dynamic amplification factors compared to
the sprung mass model. It has also been shown that the response
increases with the increase in vehicle speed and that bridge
damping has a significant effect upon the response and should
always be considered in such analysis. Bridge damping ratios
should be carefully estimated to insure more correct and accurate
representation of the true dynamic response. To obtain realistic
damping ratios, such estimation should be based on results from
tests on similar bridges. Finally, it is concluded that a tuned mass
damper is not very effective in reducing the maximum dynamic
response during the forced vibration period (i.e. when the vehicle
is on the bridge). In fact, such a device can even increase the
maximum dynamic response of some nodes and elements.
However, the reduction of the vibration level in the free vibration
period is significant as the tuned mass damper increases the overall
damping of the bridge by working as an additional energy
dissipater. The mode superposition technique was found to be very
efficient as accurate results could be obtained based on only 30
modes of vibration.

In reference [5], the influence of other important parameters such
as road surface roughness, and cables vibration (i.e. multi-element
cable discretization) is investigated. In addition, the linear and
nonlinear dynamic responses of other bridge models, such as the
Great Belt suspension bridge in Denmark, are also studied.
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